Discriminant Parallel Perceptrons
نویسندگان
چکیده
Parallel perceptrons (PPs), a novel approach to committee machine training requiring minimal communication between outputs and hidden units, allows the construction of efficient and stable nonlinear classifiers. In this work we shall explore how to improve their performance allowing their output weights to have real values, computed by applying Fisher’s linear discriminant analysis to the committee machine’s perceptron outputs. We shall see that the final performance of the resulting classifiers is comparable to that of the more complex and costlier to train multilayer perceptrons.
منابع مشابه
Multi-layer perceptrons and probabilistic neural networks for phoneme recognition
Phoneme recognition can be viewed as classifying multivariate observations. Multi-layer perceptrons (MLP) and probabilistic neural networks (PNN) approach the decision problem using two complementary models. The MLP models the discriminant surfaces between different phoneme categories, essentially by piece-wise planar approximations, while the PNN approximates class conditional probability dens...
متن کاملK-nearest Neighbors Directed Noise Injection in Multilayer Perceptron Training
The relation between classifier complexity and learning set size is very important in discriminant analysis. One of the ways to overcome the complexity control problem is to add noise to the training objects, increasing in this way the size of the training set. Both the amount and the directions of noise injection are important factors which determine the effectiveness for classifier training. ...
متن کاملNeural networks for nonlinear discriminant analysis in continuous speech recognition
In this paper neural networks for Nonlinear Discrimi nant Analysis in continuous speech recognition are pre sented Multilayer Perceptrons are used to estimate a posteriori probabilities for Hidden Markov Model states which are the optimal discriminant features for the sepa ration of the HMM states The a posteriori probabilities are transformed by a principal component analysis to calcu late the...
متن کاملAcoustic identification of twelve species of echolocating bat by discriminant function analysis and artificial neural networks.
We recorded echolocation calls from 14 sympatric species of bat in Britain. Once digitised, one temporal and four spectral features were measured from each call. The frequency-time course of each call was approximated by fitting eight mathematical functions, and the goodness of fit, represented by the mean-squared error, was calculated. Measurements were taken using an automated process that ex...
متن کاملOptimized multilayer perceptrons for molecular classification and diagnosis using genomic data
MOTIVATION Multilayer perceptrons (MLP) represent one of the widely used and effective machine learning methods currently applied to diagnostic classification based on high-dimensional genomic data. Since the dimensionalities of the existing genomic data often exceed the available sample sizes by orders of magnitude, the MLP performance may degrade owing to the curse of dimensionality and over-...
متن کامل